Intel Blog: Finding a Linux Kernel bug by running Simics on Simics

intel sw smallI love bug and debug stories in general. Bugs are a fun and interesting part of software engineering, programming, and systems development. Stories that involve running Simics on Simics to find bugs are a particular category that is fascinating, as it shows how to apply serious software technology to solve problems related to said serious software technology.  On the Intel Software and Services blog, I just posted a story about just that: debugging a Linux kernel bug provoked by Simics, by running Simics on a small network of machines inside of Simics. See https://blogs.intel.com/evangelists/2016/05/30/finding-kernel-1-2-3-bug-running-wind-river-simics-simics/ for the full story.

Continue reading “Intel Blog: Finding a Linux Kernel bug by running Simics on Simics”

Wind River Blog: Resolving Software Issues using Lab Cloud

hlc-temp-logoThere is a new post at my Wind River blog, about how I helped a colleague resolve a real problem using the preview version of the new Helix Lab Cloud system. The Lab Cloud right now is basically Simics behind a simplified web user interface, exposing the checkpointing and record-replay facilities in a very clear way.  You can also share your sessions for live interactions with other people, which is truly cool.

I Want One… Trillion Instructions…

There is an eternal debate going on in virtual platform land over what the right kind of abstraction is for each job. Depending on background, people favor different levels. For those with a hardware background, more details tend to be the comfort zone, while for those with a software background like myself, we are quite comfortable with less details. I recently did some experiments about the use of quite low levels of hardware modeling details for early architecture exploration and system specification.

Continue reading “I Want One… Trillion Instructions…”

Enea and Freescale Article on SMP OS

Elektronik i Norden just published a technical insight article about the SMP kernels of Enea OSE and Linux, by Patrik Strömblad and Jonas Svennebring.

Continue reading “Enea and Freescale Article on SMP OS”

Three Cores make a Crowd — or a Problem

mpc8640d_ppA common question from simulation users to us simulation providers is “can I simulate a machine with N cores”, where N is “large”. As if running lots of cores was a simulation system or even a hardware problem. In almost all cases, the problem is with software. Creating an arbitrary configuration in a virtual platform is easy. Creating a software stack for that arbitrary platform is a lot harder, since an SMP software stack needs to understand about the cores and how they communicate.

Essentially, what you need is a hardware design that has addressing room for lots of cores, and a software stack that is capable of using lots of cores — even if such configurations do not exist in hardware. Unfortunately, since software is normally written to run on real existing machines, there tends to be unexpected limitations even where scalability should be feasible “in principle”.

Here is the story of how I convinced Linux to handle more than two cores in a virtual MPC8641D machine.

Continue reading “Three Cores make a Crowd — or a Problem”

Tying a Thread to a Processor in Linux

This is a small Linux SMP programming tip, which I had a hard time finding documented clearly anywhere on the web. I guess people won’t find it here either, but with some luck some search engine will pick up on this.

Continue reading “Tying a Thread to a Processor in Linux”

Eclipse Linux Kernel Indexing Works

Edited on 2009-Feb-01, to include the link to the illustrated guide that really helps you get there faster. Thanks Simon! Also, promoted to front page, original post was put up on 2008-Nov-09.

Thanks to Simon Kågströms post (and the even better second-generation with screenshots) about using Eclipse for the Linux kernel, I have a much nicer work environment now for my ongoing work in learning Linux device drivers on PowerPC, which has helped me work my way through several hard-to-figure-out system calls. Continue reading “Eclipse Linux Kernel Indexing Works”

Shaking a Linux Device Driver on a Virtual Platform

To continue from last week’s post about my Linux device driver and hardware teaching setup in Simics, here is a lesson I learnt this week when doing some performance analysis based on various hardware speeds.

Continue reading “Shaking a Linux Device Driver on a Virtual Platform”

Learning Linux Device Drivers on a Virtual PowerPC

There are times when working with virtual hardware and not real hardware feels very liberating and efficient (not to mention safe). Bringing up, modifying, and extending operating systems is one obvious such case. Recently, I have been preparing an open-source-based demonstration and education systems based on embedded PowerPC machines, and teaching myself how to do Linux device drivers in the process. This really brought out the best in virtual platform use.

Continue reading “Learning Linux Device Drivers on a Virtual PowerPC”

Virtualization and Linux on a DSP Processor

A small tidbit that I found interesting due to the targeted platform. LinuxDevices reports that the VirtualLogix VLX-NI virtualization layer that used to run only on x86 platforms now also run on TI DSPs in the C64+ series. Basically, you put their virtualization layer on the DSP, and you can then on the same core run both a Linux kernel and a DSP/BIOS kernel. Thus supporting traditional DSP development and Linux-style development on the same core.

Continue reading “Virtualization and Linux on a DSP Processor”

Hardware Debug Support & LinuxLink PodCast

The TimeSys Embedded Linux Podcast (also called LinuxLink Radio) is a nice listen about embedded computing using Linux. Sometimes they are a bit too open-source centric, though, and ignore very good tools that live in the classic commercial world. One such example is the recent episode 20 on debugging tools, where they totally ignore modern high-powered hardware-based debugging.

Continue reading “Hardware Debug Support & LinuxLink PodCast”

Fastscale minimal virtual machines — beautiful simple idea

A company called Fastscale Technologies has a product that is simple in concept and yet very powerful. Instead of using complete installs of heavy operating systems like Linux or Windows to run applications on virtual machines, they offer tools that provide minimal operating system configurations that are tailored to the needs of a particular application. Since only that application is going to be run on the virtual machine, this is sufficient. According to press reports, this means that you can run several times more virtual machines on a given host, compared to default OS installs. And boot an order of a magnitude faster.

Continue reading “Fastscale minimal virtual machines — beautiful simple idea”