Intel Blog Post: Additional Notes on Temporal Decoupling

A few weeks ago, I talked about temporal decoupling in virtual platforms at DVCon Europe 2018. I just posted some additional notes on the topic temporal decoupling on my Intel blog. In this new blog post, I discuss some more aspects of temporal decoupling, and how it affects simulation semantics. I also explain some of the clever techniques used to minimize the impact of temporal decoupling on the software running on the virtual target system.

Read the full text at as “Additional Notes on Temporal Decoupling“.

 

 

 

Talking about Temporal Decoupling at DVCon Europe

This year’s Design and Verification Conference and Exhibition (DVCon Europe) takes place on October 24 and 25 (2018).  DVCon Europe has turned into the  best conference for virtual platform topics, and this year is no exception. There are some good talks coming!

Continue reading “Talking about Temporal Decoupling at DVCon Europe”

GPGPU for Instruction-Set Simulation – Maybe, Maybe not

I just read a quite interesting article by Christian Pinto et al, “GPGPU-Accelerated Parallel and Fast Simulation of Thousand-core Platforms“, published at the CCGRID 2011 conference. It discusses some work in using a GPGPU to run simulations of massively parallel computers, using the parallelism of the GPU to speed the simulation. Intriguing concept, but the execution is not without its flaws and it is unclear at least from the paper just how well this generalizes, scales, or compares to parallel simulation on a general-purpose multicore machine.

Continue reading “GPGPU for Instruction-Set Simulation – Maybe, Maybe not”

Interrupts and Temporal Decoupling

I am just finishing off reading the chapters of the Processor and System-on-Chip Simulation book (where I was part of contributing a chapter), and just read through the chapter about the Tensilica instruction-set simulator (ISS) solutions written by Grant Martin, Nenad Nedeljkovic and David Heine. They have a slightly different architecture from most other ISS solutions, since that they have an inherently variable target in the configurable and extensible Tensilica cores. However, the more interesting part of the chapter was the discussion on system modeling beyond the core. In particular, how they deal with interrupts to the core in the context of a temporally decoupled simulation.

Continue reading “Interrupts and Temporal Decoupling”

The 1970 rule strikes again: Virtual Platform Principles in 1967

Being a bit of a computer history buff, I am often struck by how most key concepts and ideas in computer science and computer architecture were all invented in some form or the other before 1970. And commonly by IBM. This goes for caches, virtual memory, pipelining, out-of-order execution, virtual machines, operating systems, multitasking, byte-code machines, etc. Even so, I have found a quite extraordinary example of this that actually surprised me in its range of modern techniques employed. This is a follow-up to a previous post, after having actually digested the paper I talked about earlier.

Continue reading “The 1970 rule strikes again: Virtual Platform Principles in 1967”

VMM Detection Myths and Realities from a Simics and Embedded Perspective

It must have been Google Alerts that send me a link to the HOTOS 2007 (Hot Topics in Operating Systems) paper by Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin called Compatibility is not Transparency: VMM Detection Myths and Realities. This paper is slightly less than a year old today, so it is old by blog standards and quite recent by research paper standards. It deals with the interesting problem of whether a virtual machine can be made undetectable by software running on it — and software that is trying to detect it. Their conclusion is that it is not feasible, and I agree with that. The reason WHY that is the case can use some more discussion, though… and here is my take on that issue from a Simics/embedded systems virtualization perspective.

Continue reading “VMM Detection Myths and Realities from a Simics and Embedded Perspective”