Intel Blog: A Mountain and Threading for Simics 6

A new short blog post on my Intel Developer Zone blog talks about the improved threading simulation core we have added in Simics version 6… and about how a colleague of mine climbed to the top of the highest mountain in Europe and showed a flag with our new Simics icon! Read the story at https://software.intel.com/en-us/blogs/2019/09/10/simics-6-at-the-mountain-top.

Intel Blog: Simics 6 Device Register Coverage

I have a new blog post out on the Intel Developer Zone, about the Simics 6 device register coverage feature. I use device register coverage to look at how different operating systems use the same hardware. The differences are significant, demonstrating the (rather expected) observation that different software stacks use the same hardware in different ways.

Continue reading “Intel Blog: Simics 6 Device Register Coverage”

Using FPGAs to Simulate old Game Consoles

A while ago, Ars Technica reviewed the Mega Sg, a modern clone of the old Sega Genesis gaming system. I stumbled on this review recently and realized that this is a fascinating piece of hardware. The Mega Sg is produced by a company called Analogue (https://www.analogue.co/), presumably named thus because they create analogues to old gaming consoles. The way this is done is different from most current “revive the old consoles” products that simply use software emulation to run old games. Instead, Analogue seems to have settled on using FPGA (Field-Programmable Gate Array) technology to basically build new hardware that is functionally equivalent to the old console hardware.

Continue reading “Using FPGAs to Simulate old Game Consoles”

SAMOS 2019 – Insights, Mechanisms, Heterogeneity, and more

Earlier in July 2019, I had the honor of presenting one of the keynote talks at the 19th SAMOS (International Conference on Embedded Computer Systems: Architectures, MOdeling, and Simulation) conference, held on the island of Samos in Greece. When I got the invite, I had no real idea what to expect. I asked around a bit and people said it was a good conference with a rather special vibe. I think that is a very good description of the conference: a special vibe. In addition to the usual papers and sessions, there is a strong focus on community and social events, fostering discussion across academic disciplines and between industry and academia. There were many really great discussions in addition to the paper and keynote presentations, and overall it was one of the most interesting conferences I have been to in recent years.

Continue reading “SAMOS 2019 – Insights, Mechanisms, Heterogeneity, and more”

DAC 2019 – Cloud, a Book, an Award, and More

Last week was spent at the Design Automation Conference (DAC) in Las Vegas. I had a presentation and poster in the Designer/IP track about Clouds, Containers, and Virtual Platforms , and worked in the Intel Simulation Solutions booth at the show floor. The DAC was good as always, meeting many old friends in the industry as well as checking out the latest trends in EDA (hint: same trends as everywhere else).  One particularly nice surprise was a book (the printed type, not the Vegas “book” that means something else entirely).

Continue reading “DAC 2019 – Cloud, a Book, an Award, and More”

Intel Blog Post: Simics in the DARPA Cyber Grand Challenge

The US Defense Advanced Projects Agency (DARPA) ran a “Cyber Grand Challenge” in 2016, where automated cyber-attack and cyber-defense systems were pitted against each other to drive progress in autonomous cyber-security. The competition was run on physical computers (obviously), but Simics was used in a parallel flow to check that competitors’ programs were not trying to undermine the infrastructure of the competition rather than compete fairly inside the rules of the competition.

Continue reading “Intel Blog Post: Simics in the DARPA Cyber Grand Challenge”

Intel Blog Posts: Running Simics in Containers

Running Simics inside a container is a topic that has come up several times in recent years. In a two-part Intel Developer Zone blog post, my colleague Mambwe Mumbwa and I discuss both some background on container technology, how and how well Simics can run inside of containers, and what you can with containerized Simicses. Overall, containers offer a very good alternative to virtual machines for running programs like Simics, and the tool ecosystem opens up some exciting new ways to manage Simics installations and simulation instances.

Update: this post was extended to link to both part 1 and part 2 of the blog.

Continue reading “Intel Blog Posts: Running Simics in Containers”

Embedded World 2019

The Embedded World in Nürnberg is still going strong as the best tradeshow for “Embedded” in the world. This year, I spent time doing booth duty and gave a talk in the Conference part of the event. There was an unusual high number of old friends and business acquaintances around, and it was a great experience overall with many fruitful discussions and connections for the future.  However, it seems that there is always something that goes slightly awry with my travel to the show…

Continue reading “Embedded World 2019”

Shifting Left Together at the Embedded World 2019

The Embedded World Exhibition and Conference 2019 is coming up in the last week of February. I will be there presenting a paper in the conference as well as demoing CoFluent in the Intel booth and some other miscellany. The paper “Shifting-Left Together – Enabling the Ecosystem with Virtual Platforms” is about how silicon vendors can (should) use virtual platforms to bring shift-left practices to their customers in addition to their own internal teams.   

Continue reading “Shifting Left Together at the Embedded World 2019”

Intel Blog Post: Additional Notes on Temporal Decoupling

A few weeks ago, I talked about temporal decoupling in virtual platforms at DVCon Europe 2018. I just posted some additional notes on the topic temporal decoupling on my Intel blog. In this new blog post, I discuss some more aspects of temporal decoupling, and how it affects simulation semantics. I also explain some of the clever techniques used to minimize the impact of temporal decoupling on the software running on the virtual target system.

Read the full text at as “Additional Notes on Temporal Decoupling“.

 

 

 

DVCon Europe 2018 / A Few Cool Papers

DVCon Europe took place in München, Bayern, Germany, on October 24 and 25, 2018. Here are some notes from the conference, including both general observations and some details on a few papers that were really quite interesting. This is not intended as an exhaustive replay, just my personal notes on what I found interesting.

Continue reading “DVCon Europe 2018 / A Few Cool Papers”

Talking about Temporal Decoupling at DVCon Europe

This year’s Design and Verification Conference and Exhibition (DVCon Europe) takes place on October 24 and 25 (2018).  DVCon Europe has turned into the  best conference for virtual platform topics, and this year is no exception. There are some good talks coming!

Continue reading “Talking about Temporal Decoupling at DVCon Europe”

Intel Blog Post: Interview with Bengt Werner on the Early Days of Simics

Bengt Werner was one of the first people to work on the simulator that would become Simics, way back in 1992. On my Intel Blog, I published an interview with Bengt a while back where we discuss the early days of Simics and the original product vision and use cases.

Continue reading “Intel Blog Post: Interview with Bengt Werner on the Early Days of Simics”

Intel Blog Post: The Simics Fulprompt, Fulöl, and Fuldans

I have a new blog post up at the Intel Developer Zone, this time about the Simics “fulprompt”. Every software team has its legends about spectacular mistakes, crazy users, and customer calls with strange questions.  The Simics “fulprompt” is one example of this from the early days of Simics. It was a prompt that appeared where no prompt would normally appear, right in the middle of executing an instruction. As such, it was an ugly hack… and for Swedes who were around in the 1990s, the only name for a ugly hack is a fulhack.

Continue reading “Intel Blog Post: The Simics Fulprompt, Fulöl, and Fuldans”

Intel Blog Post: Fault Injection in the Early Days of Simics

Injecting faults into systems and subjecting them to extreme situations at or beyond their nominal operating conditions is an important part of making sure they keep working even when things go bad.  It was realized very early in the history of Simics (and the same observation had been made by other virtual platform and simulator providers) that using a virtual platform makes it much easier to provide cheap, reliable, and repeatable fault injection for software testing. In an Intel Developer Zone (IDZ) blog post, I describe some early cases of fault injection with Simics.

Continue reading “Intel Blog Post: Fault Injection in the Early Days of Simics”

Simulators in Racks at the Embedded World 2018

I work with virtual platforms and software simulation technology, and for us most simulation is done on standard servers, PCs, or latptops. Sometimes we connect up an FPGA prototype or emulator box to run some RTL, or maybe a real-world PCIe device, but most of the time a simulator is just another general-purpose computer with no special distinguishing properties. When connecting to the real world, it is simple standard things like Ethernet, serial ports, or USB.

There are other types of simulators in the world however – still based on computers running software, but running it somehow closer to the real world, and with actual physical connections to real hardware beyond basic Ethernet and USB. I saw a couple of nice examples of this at the Embedded World back in February, where full-height racks were basically “simulators”.

Continue reading “Simulators in Racks at the Embedded World 2018”

Intel Blog Post: Simulation a Thousand Target Machines – in 2004 and 2018

Back in 2004, the startup Virtutech built a crazy demo for the 2004 Embedded Systems Conference (ESC). Back then, ESC was the place to be, and Virtutech was there with a battery of demos to blast the competition.  The most interesting demo from a technology perspective was the 1002-machine network, as described in an Intel Developer Zone blog post of mine.

Continue reading “Intel Blog Post: Simulation a Thousand Target Machines – in 2004 and 2018”

Intel Blog Post: Running Large Workloads on Simics – in 1998 and 2018

I have just released a new blog post on my Intel Developer Zone blog, about how Simics runs large huge workloads. I look back at the kinds of workloads that ran on Simics back in 1998 when the product first went commercial, and then look at some current examples running on Simics.  This is the first post in a series intended to celebrate 20 years of Simics as a commercial product.

Continue reading “Intel Blog Post: Running Large Workloads on Simics – in 1998 and 2018”

Intel Blog Post: Simulation in the Gartner Top Ten Tech Trends for 2018

There is a blog post out on my Intel Developer Zone blog where I take a look at the Gartner “Top Ten Tech Trends” for 2018.  There are a couple of them where I found clear roles for the kinds of simulation tools we build in my little corner of Intel. In particular, Digital Twins is a concept that is all about simulation.  To find the other trend where I found a big role for simulation, read the full blog post.

Intel Blog: Question: Does Software Actually Use New Instruction Sets?

Over time, Intel and other processor core designers add more and more instructions to the cores in our machines. A good question is how quickly and easily new instructions added to an Instruction-Set Architecture (ISA) actually gets employed by software to improve performance and add new capabilities. Considering that our operating systems and programs are generally backwards-compatible, and run on all kind of hardware, can they actually take advantage of new instructions?

Continue reading “Intel Blog: Question: Does Software Actually Use New Instruction Sets?”

Talking Checkpointing in SystemC at the SystemC Evolution Day 2017

inThere will be a session on checkpointing in SystemC at the upcoming  SystemC Evolution Day in München on October 18, 2017. I will be presenting it, together with some colleagues from Intel. Checkpointing is a very interesting topic in its own right, and I have written lots about it in the past – both as a technology and it applications.

Continue reading “Talking Checkpointing in SystemC at the SystemC Evolution Day 2017”

Intel Blog Post: Getting to Small Batches in System Development using Simulation

I have posted a two-part blog post to the public Intel Developer Zone blog, about the “Small Batches Principle” and how simulation helps us achieve it for complicated hardware-software systems. I found the idea of the “small batch” a very good way to frame my thinking about what it is that simulation really brings to system development. The key idea I want to get at is this:

[…] the small batches principle: it is better to do work in small batches than big leaps. Small batches permit us to deliver results faster, with higher quality and less stress.

Continue reading “Intel Blog Post: Getting to Small Batches in System Development using Simulation”

Intel Blog Post: The More the Merrier – Integration and Virtual Platforrms

Integration is hard, that is well-known. For computer chip and system-on-chip design, integration has to be done pre-silicon in order to find integration issues early so that designs can be updated without expensive silicon re-spins. Such integration involves a lot of pieces and many cross-connections, and in order to do integration pre-silicon, we need a virtual platform.

Continue reading “Intel Blog Post: The More the Merrier – Integration and Virtual Platforrms”

Intel Blog: Finding BIOS Vulnerabilities with Symbolic Execution and Virtual Platforms

I have just published a piece about the Intel Excite project on my Software Evangelist blog at the Intel Developer Zone. The Excite project is using a combination of of symbolic execution, fuzzing, and concrete testing to find vulnerabilities in UEFI code, in particular in SMM. By combining symbolic and concrete techniques plus fuzzing, Excite achieves better performance and effect than using either technique alone.

Continue reading “Intel Blog: Finding BIOS Vulnerabilities with Symbolic Execution and Virtual Platforms”

Simulation and the Apollo Guidance Computer

Today, when developing embedded control systems, it is standard practice to test control algorithms against some kind of “world model”, “plant model” or “environment simulator”.

Using a simulated control system or a virtual platform running the actual control system code, connected to the world model lets you test the control system in a completely virtual and simulated environment (see for example my Trinity of Simulation blog post from a few years ago). This practice of simulating the environment for a control computer is long-standing in the aerospace field in particular, and I have found that it goes back at least to the Apollo program.

Continue reading “Simulation and the Apollo Guidance Computer”

Intel Blog: How 3dfx was Built on a Simulator

In the early 1990s, “PC graphics” was almost an oxymoron. If you wanted to do real graphics, you bought a “real machine”, most likely a Silicon Graphics workstation. At the PC price-point, fast hardware-accelerated 3D graphics wasn’t doable… until it suddenly was, thanks to Moore’s law. 3dfx was the first company to create fast 3D graphics for PC gamers.  To get off the ground and get funded, 3dfx had to prove that their ideas were workable – and that proof came in the shape of a simulator.  They used the simulator to demo their ideas, try out different design points, develop software pre-silicon, and validate the silicon once it arrived.  Read the full story on my Intel blog, “How Simulation Started a Billion-Dollar Company”, found at the Intel Developer Zone blogs.

gem5 Full Speed Ahead (FSA)

I had many interesting conversations at the HiPEAC 2017 conference in Stockholm back in January 2017. One topic that came up several times was the GEM5 research simulator, and some cool tricks implemented in it in order to speed up the execution of computer architecture experiments. Later, I located some research papers explaining the “full speed ahead” technology in more detail. The mix of fast simulation using virtualization and clever tricks with cache warming is worth a blog post.

Continue reading “gem5 Full Speed Ahead (FSA)”

Intel Blog: Continuous Delivery for Embedded Systems and how Simulation can Help

Doing continuous integration and continuous delivery for embedded systems is not necessarily all that easy. You need to get tools in place to support automatic testing, and free yourself from unneeded hardware dependencies. Based on an inspiring talk by Mike Long from Norway, I have a piece on how simulation helps with embedded CI and CD on my Software Evangelist blog on the Intel Developer Zone.

Intel Blog: Testing and the ESA Schiaparelli Lander

It is really sad that the European Space Agency (ESA) lost their Schiaparelli lander last year, as we will miss out on a lot of Mars science. From a software engineering and testing perspective, the story of why the landing failed  rather instructive, though. It gets down to how software can be written and tested to deal with unexpected inputs in unexpected circumstances. I wrote a piece about this on my blog at the Intel Developer Zone.

Simulics – A New Commercial Reverse Debugger

simulics_logo_just_logoA new entry just showed up in the world of reverse debuggingSimulics, from German company Simulics. It does seem like the company and the tool are called the same. Simulics is a rather rare breed, the full-system-simulation-based reverse debugger. We have actually only seen a few these in history, with Simics being the primary example. Most reverse debuggers apply to user-level code and use various forms of OS call intercepts to create a reproducible run. Since the Simulics company clearly comes from the deeply embedded systems field, it makes sense to take the full-system approach since that makes it possible to debug code such as interrupt handlers.

I have also updated my history of commercial reverse debuggers to include Simulics.

Continue reading “Simulics – A New Commercial Reverse Debugger”