DVCon Europe 2021 – Testbenches, AI, and Open Source

Just like in 2020, the Design and Verification Conference (DVCon) Europe 2021 was a virtual conference. It took place from October 26 to 27, with the SystemC Evolution day on October 28 (as usual). As has been the case in recent years, the verification side of the conference is significantly larger than the design side. This is common with the other DVCon conferences in the world. In this blog, I will go through my main observations from DVCon Europe, and share some notes from some of the presentations.

Continue reading “DVCon Europe 2021 – Testbenches, AI, and Open Source”

Intel Blog Posts: Running Simics in Containers

Running Simics inside a container is a topic that has come up several times in recent years. In a two-part Intel Developer Zone blog post, my colleague Mambwe Mumbwa and I discuss both some background on container technology, how and how well Simics can run inside of containers, and what you can with containerized Simicses. Overall, containers offer a very good alternative to virtual machines for running programs like Simics, and the tool ecosystem opens up some exciting new ways to manage Simics installations and simulation instances.

Update: this post was extended to link to both part 1 and part 2 of the blog.

Continue reading “Intel Blog Posts: Running Simics in Containers”

Intel Blog Post: Running Large Workloads on Simics – in 1998 and 2018

I have just released a new blog post on my Intel Developer Zone blog, about how Simics runs large huge workloads. I look back at the kinds of workloads that ran on Simics back in 1998 when the product first went commercial, and then look at some current examples running on Simics.  This is the first post in a series intended to celebrate 20 years of Simics as a commercial product.

Continue reading “Intel Blog Post: Running Large Workloads on Simics – in 1998 and 2018”

Intel Blog: Why Target Variation Matters (finding a Xen bug)

xen_project_logo_really_small

Simics and other simulation solutions are a great way to add more variation to your software testing. I have just documented a nice case of this on my blog at the Intel Developer Zone (IDZ), where the Simics team found a bug in how Xen deals with MPX instructions when using VT-x.  Thanks to running on Simics, where scenarios not available in current hardware are easy to set up.

Continue reading “Intel Blog: Why Target Variation Matters (finding a Xen bug)”

Reverse Debug with Hardware in the Loop

reverse iconLast year (2015), a paper called “Don’t Panic: Reverse Debugging of Kernel Drivers” was presented at the ESEC/FSE (European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering) conference. The paper was written by Pavel Dovgalyuk, Denis Dmitriev, and Vladimir Makarov from the Russian Academy of Sciences. It describes a rather interesting approach to Linux kernel device driver debug, using a deterministic variant of Qemu along with record/replay of hardware interactions.  I think this is the first published instance of using reverse debugging in a simulator together with real hardware.

Continue reading “Reverse Debug with Hardware in the Loop”

First post on the Intel Software and Services Blog

intel sw small I have posted my first blog post to the Intel Software and Services blog channel. The Intel Software and Services blog is one channel in the Intel corporate blog you find at https://blogs.intel.com/.  Other bloggers on the Software and Services channel write about security, UEFI, cloud, graphics, open source software, and other topics. Intel has a large software development community, and we produce quite a bit of software – and we do write about the innovations that come out of Intel that rely on software.

On my part, I will be posting more materials on simulation at Intel, as part of my role as a simulation evangelist on the Software and Service blog channel.

 

Breaking and Detecting Simulators and Emulators

binary codeI have read a few news items and blog posts recently about how various types of software running on top of virtual machines and emulators have managed to either break the emulators or at least detect their presence and self-destruct. This is a fascinating topic, as it touches on the deep principles of computing: just because a piece of software can be Turing-equivalent to a piece of hardware does not mean that software that goes looking for the differences won’t find any or won’t be able to behave differently on a simulator and on the real thing.

Continue reading “Breaking and Detecting Simulators and Emulators”

Busy Writing a Book About Simics

once upon a time - squaredFor the past six months I have not been doing much blogging at all, neither here nor on the Wind River blog.  The reason is that I have been directing my writing energy into writing a text book about Simics together with Daniel Aarno at Intel.  Last year, Daniel and I worked on an Intel Technology Journal issue on Simics.  The ITJ issue was kind of a first step on the way to the book, collecting several articles about Simics usage at Intel and elsewhere.  The book itself will be much more of a detailed description of Simics and how it works and why it works the way it works.

Continue reading “Busy Writing a Book About Simics”

Intel Technology Journal on Simics

Simics_ITJ_180-wideThe September 2013 issue of the Intel Technology Journal (which actually arrived in December) is all about Simics. Daniel Aarno of Intel and I served as the content architects for the issue, which meant that we managed to contributed articles from various sources, and wrote an introductory article about Simics and its usage in general. It has taken a while to get this journal issue out, and now that it is done it feels just great! I am very happy about the quality of all the ten contributed articles, and reading the final versions of them actually taught me some new things you could do with Simics! I already wrote about the issue in a Wind River blog post, so in this my personal blog I want to be a little bit more, well, personal.

Continue reading “Intel Technology Journal on Simics”

S4D Paper on Transporting Bugs with Checkpoints

I have a paper about “Transporting Bugs with Checkpoints” to be presented at the S4D (System, Software, SoC and Silicon Debug) conference in Southampton, UK, on September 15 and 16, 2010. The core concept presented is to leverage Simics checkpointing to capture and move a bug from the bug reporter to the responsible developer. It is a fairly simple idea, but getting it to work efficiently does require that some things are done right. See the longer Wind River blog posting about this topic for a few more details.

Wind River Blog: Interview with a Virtualization Researcher

Past Friday, I posted a new blog post in my Wind River blog. It is an interview the PhD student Girish Venkatasubramanian from the University of Florida. He is doing research on virtual machines/hypervisors and how they can be implemented more efficiently by making fairly small changes to the architecture of memory management units.

Continue reading “Wind River Blog: Interview with a Virtualization Researcher”

FLOSS Weekly on Xen: Some Background Missing

flossweeklyFLOSS Weekly recently ran an interview with the creator of the Xen project, Ian Pratt from the University of Cambridge (and now working for Citrix since they bought Xensource). Since I happen to like virtual things, even the so-much-talked-about-it-hurts IT/server/desktop virtualization world this was a must-listen. It was a good show, but lacking some in the humble background department.

Continue reading “FLOSS Weekly on Xen: Some Background Missing”

Cadence on Virtual Prototypes instead of Host Execution

Cadence technical blogger Jason Andrews wrote a short piece a couple of days ago on his perception that host-based execution is becoming unncessary thanks to fast virtual platforms. In “Is Host-Code Execution History“, he tells the story of a technique from long time ago where a target program was executed directly on the host, and memory accesses captured and passed to a Verilog simulator. The problem being solved was the lack of a simulator for the MIPS processor in use, and the solution was pretty fast and easy to use. Quite interesting, and well worth a read.

However, like all host-compiled execution (which I also like to call API-level simulation) it suffered from some problems, and virtual platforms today might offer the speed of host-compiled simulation without all the problems.

Continue reading “Cadence on Virtual Prototypes instead of Host Execution”

What is Efficiency when Cores are Free?

More from the SiCS multicore days 2008.

There were some interesting comments on how to define efficiency in a world of plentiful cores. The theme from my previous blog post called “Real-Time Control when Cores Become Free” came up several times during the talks, panels, and discussions. It seems that this year, everybody agreed that we are heading to 100s or 1000s of “self-respecting” cores on a single chip, and that with that kind of core count, it is not too important to keep them all busy at all times at any cost. As I stated earlier, cores and instructions are now free, while other aspects are limiting, turning the classic optimization imperatives of computing on its head. Operating systems will become more about space-sharing than time-sharing, and it might make sense to dedicate processing cores to the sole job of impersonating peripheral units or doing polling work. Operating systems can also be simplified when the job of time-sharing is taken away, even if communications and resource management might well bring in some new interesting issues.

So, what is efficiency in this kind of environment?

Continue reading “What is Efficiency when Cores are Free?”

Google Chrome and Parallel Browsing

Everybody seems to think the launch of the Google Chrome browser is very important and cool. Probably because Google itself is considered important and cool. I am a bit more skeptical about the whole Google thing, they seem to building themselves into a pretty dangerous monopoly company… but there are some interesting architectural and parallel computing aspects to Chrome — and Internet Explorer 8, it turns out.

Continue reading “Google Chrome and Parallel Browsing”