rr– The Mozilla Reverse Debugger

rrA new record, replay, and reverse debugger has appeared, and I just had to take a look at what they do and how they do it. “rr” has been developed by the Firefox developers at Mozilla Corporation, initially for the purpose of debugging Firefox itself. Starting at a debugger from the angle of attacking a particular program does let you get things going quickly, but the resulting tool is clearly generally useful, at least for Linux user-land programs on x86. Since I have tried to keep up with the developments in this field, a write-up seems to be called for.

Continue reading “rr– The Mozilla Reverse Debugger”

The First 64-bit Phone

apple_A7_image

Apple just released their new iPhone 5s, where the biggest news is really the 64-bit processor core inside the new A7 SoC. Sixty four bits in a phone is a first, and it immediately raises the old question of just what 64 bits gives you. We saw this when AMD launched the Opteron and 64-bit x86 PC computing back in the early 2000’s, and in a less public market the same question was asked as 64-bit MIPS took huge chunks out of the networking processor market in the mid-2000s. It was never questioned in servers, however.

Continue reading “The First 64-bit Phone”

Neat Register Design to Avoid Races

raceconditionIn his most recent Embedded Bridge Newsletter, Gary Stringham describes a solution to a common read-modify-write race-condition hazard on device registers accessed by multiple software units in parallel. Some of the solutions are really neat!

I have seen the “write 1 clears” solution before in real hardware, but I was not aware of the other two variants. The idea of having a “write mask” in one half of a 32-bit word is really clever.

However, this got me thinking about what the fundamental issue here really is.

Continue reading “Neat Register Design to Avoid Races”