DVCon Europe 2023 – 10th Anniversary Edition

The 2023 DVCon (Design and Verification) Europe conference took place on November 14 and 15, in the traditional location of the Holiday Inn Munich City Center. This was the 10th time the conference took place, serving as an excuse for a great anniversary dinner. Also new was the addition of a research track to provide academics publishing at the conference with the academic credit their work deserves. This year had a large number of papers related to virtual platforms, so writing this report has taken me longer than usual. There was just so much to cover.

Continue reading “DVCon Europe 2023 – 10th Anniversary Edition”

The first Computer and System Architecture Unraveled Event in Kista – Great Speakers, Great Fun!

On the evening of the last Wednesday in September, we had our first CaSA, Computer and System Architecture Unraveled, event. CaSA is a meetup in Kista (Sweden) for people interested in computer architecture, system architecture, and how software and hardware interact down towards the lower levels of the stack. The topic for the inaugural event was “Core Count Explosion: A Challenge for Hardware and Software”, and it was great in some many ways!

Continue reading “The first Computer and System Architecture Unraveled Event in Kista – Great Speakers, Great Fun!”

DVCon Europe 2020 – Developing Hardware like Software?

The Design and Verification Conference Europe (DVCon Europe) took place back in late October 2020. In a normal year, we would add “in München, Germany” to the end of that sentence. But that is not how things were done in 2020. Instead, it was a virtual conference with world-wide attendance. Here are my notes on what I found the most interesting from the conference (for various reasons, this text did come out with a bit of delay).

Continue reading “DVCon Europe 2020 – Developing Hardware like Software?”

Embedded World 2019

The Embedded World in Nürnberg is still going strong as the best tradeshow for “Embedded” in the world. This year, I spent time doing booth duty and gave a talk in the Conference part of the event. There was an unusual high number of old friends and business acquaintances around, and it was a great experience overall with many fruitful discussions and connections for the future.  However, it seems that there is always something that goes slightly awry with my travel to the show…

Continue reading “Embedded World 2019”

gem5 Full Speed Ahead (FSA)

I had many interesting conversations at the HiPEAC 2017 conference in Stockholm back in January 2017. One topic that came up several times was the GEM5 research simulator, and some cool tricks implemented in it in order to speed up the execution of computer architecture experiments. Later, I located some research papers explaining the “full speed ahead” technology in more detail. The mix of fast simulation using virtualization and clever tricks with cache warming is worth a blog post.

Continue reading “gem5 Full Speed Ahead (FSA)”

Thin Phone, Fat Core

nvidia_logoWhen mobile phones first appeared, they were powered by very simple cores like the venerable ARM7 and later the ARM9. Low clock frequencies, zero microarchitectural sophistication, sufficient for the job. In recent years, as smartphones have come into their own as the most important computing device for most people, the processor performance of mobile phones have increased tremendously. Today, cutting-edge phones and tablets contain four or eight cores, running at clock frequencies well above 2 gigahertz. The performance race for most of the market (more about that in a moment) was mostly about pushing higher clock frequencies and more cores, even while microarchitecture was left comparatively simple. Mobile meant “fairly simple”, and IPC was nowhere near what you would get with a typical Intel processor for a laptop or desktop.

Today, that seems to be changing, as the Nvidia Denver core and Apple’s Cyclone core both go the route of a few fat cores rather than many thin cores.

Continue reading “Thin Phone, Fat Core”

David May on Multicore: Heterogeneity not Needed

Via the EETimes, I found a very interesting talk by Bristol professor David May, presented at the 4th Annual Bristol Multicore Challenge, in June of 2013. The talk can be found as a Youtube movie here, and the slides are available here. The EETimes focused on the idea to cut down ARM to be really RISC, but I think the more interesting part is Professor May’s observations on multicore computing in general, and the case for and against heterogeneity in (parallel) computers.

Continue reading “David May on Multicore: Heterogeneity not Needed”

Two Cores, Four Cores, Eight Cores – Mobile Variety

Probably thanks to the yearly Mobile World Congress, there have been a slew of recent announcements of mobile application processors recently. Everything is ARM-based, but show quite some variety in the CPU core configurations used. Indeed, I think this variety has something to say on the general state of multicore.

Continue reading “Two Cores, Four Cores, Eight Cores – Mobile Variety”

Does ISA Matter for Performance?

When I grew up with computers, the big RISC vs CISC debate was raging. At the time, in the late 1980s, it did indeed seem that RISC was inherently superior to CISC. SPARCs, MIPS, and Alpha all outpaced boring old x86, VAX and 68000 processors. This turned out to be a historical parenthesis, as the Pentium Pro from Intel showed how RISC-style performance could be mated to a CISC ISA. However, maybe ISAs still do matter.

Continue reading “Does ISA Matter for Performance?”

Nvidia “Kal-El” Variable SMP

Nvidia recently announced that their already-known “Kal-El” quad-core ARM Cortex-A9 SoC actually contains five processor cores, not just four as a “normal” quad-core would. They call the architecture “Variable SMP”, and it is a pretty smart design. The one where you think, “I should have thought of that”, which is the best sign of something truly good.

Continue reading “Nvidia “Kal-El” Variable SMP”

Steve Furber: Emulated BBC Micro on Archimedes on PC

I just read an interview with Steve Furber, the original ARM designer, in the May 2011 issue of the Communications of the ACM. It is a good read about the early days of the home computing revolution in the UK. He not only designed the ARM processor, but also the BBC Micro and some other early machines.

Continue reading “Steve Furber: Emulated BBC Micro on Archimedes on PC”

Memory Models: x86 is TSO, TSO is Good

By chance, I got to attend a day at the UPMARC Summer School with a very enjoyable talk by Francesco Zappa Nardelli from INRIA. He described his work (along with others) on understanding and modeling multiprocessor memory models. It is a very complex subject, but he managed to explain it very well.

Continue reading “Memory Models: x86 is TSO, TSO is Good”

S4D 2010

Looks like S4D (and the co-located FDL) is becoming my most regular conference. S4D is a very interactive event. With some 20 to 30 people in the room, many of them also presenting papers at the conference, it turns into a workshop at its best. There were plenty of discussion going on during sessions and the breaks, and I think we all got new insights and ideas.

Continue reading “S4D 2010”

Concurrency in Lego Mindstorms NXT

lego mindstorms nxt2

For my parental leave, I have just bought myself a Lego Mindstorm NXT 2.0 kit. It is not much fun for our youngest, who mostly gets a bit scared by a piece of Lego driving around making noises, but I hope to be able to use it to teach my older child (almost five) to program. Let’s see how that turns out. It looks hard to make the NXT environment provide the kind of Roborally-style programming blocks that I had hoped to create, as I cannot for some reason get a sufficiently custom icon onto custom blocks.

It also presented me with an opportunity to try some domain-specific high-level graphical programming. The programming environment provided for the NXT series of Mindstorms kits is based on LabView from National Instruments, and it really does seem to work. It even features parallel tasks, which I tried to use…

Continue reading “Concurrency in Lego Mindstorms NXT”