SiCS Multicore Day 2012

The 2012 edition of the SiCS Multicore Day was fun, like they have always been in the past. I missed it in 2010 and 2011, but could make it back this year. It was interesting to see that the points where keynote speakers disagreed was similar to previous years, albeit with some new twists. There was also a trend in architecture, moving crypto operations into the core processor ISA, that indicates another angle on the hardware accelerator space.

Continue reading “SiCS Multicore Day 2012”

Wind River Blog: Testing Multicore Scaling with a Simics QSP

A few years ago, I built a demo on Simics that used a hacked Freescale MPC8641D target that was forced to scale from 1 to 8 cores. Some interesting experiements could be made using this target, and it was nicely scalable for its time. However, I always wanted to have something just a bit bigger. Say 20 cores, or 100. Just to see what would happen. Finally, I got it.

The Simics QSP target that we quietly launched earlier this Summer is such a scalable target. As discussed in a blog post describing the architecture, it is designed to scale to 128 cores currently. Using this ability, I repeated my old experiments, but trying very large threads counts and target core counts. The results show clearly that the way that I coded my parallel computation program was pretty bad, and I really would like to try to rewrite it using some more modern threading library. All I need is time and a way to cross-compile Wool

Anyway, the new blog post is here.

Back to Bare Metal

Once upon a time, all programming was bare metal programming. You coded to the processor core, you took care of memory, and no operating system got in your way. Over time, as computer programmers, users, and designers got more sophisticated and as more clock cycles and memory bytes became available, more and more layers were added between the programmer and the computer. However, I have recently spotted what might seem like a trend away from ever-thicker software stacks, in the interest of performance and, in particular, latency.

Continue reading “Back to Bare Metal”

David Ungar: It is Good to be Wrong

I was recently pointed to a 2011 SPLASH presentation by David Ungar, an IBM researcher working on parallel programming for manycore systems. In particular, in a project called Renaissance, run together with the Vrije Universiteit Brussels in Belgium (VUB) and Portland State University in the US. The title of the presentation is “Everything You Know (about Parallel Programming) Is Wrong! A Wild Screed about the Future“, and it has provoked some discussion among people I know about just how wrong is wrong.

Continue reading “David Ungar: It is Good to be Wrong”

GPGPU for Instruction-Set Simulation – Maybe, Maybe not

I just read a quite interesting article by Christian Pinto et al, “GPGPU-Accelerated Parallel and Fast Simulation of Thousand-core Platforms“, published at the CCGRID 2011 conference. It discusses some work in using a GPGPU to run simulations of massively parallel computers, using the parallelism of the GPU to speed the simulation. Intriguing concept, but the execution is not without its flaws and it is unclear at least from the paper just how well this generalizes, scales, or compares to parallel simulation on a general-purpose multicore machine.

Continue reading “GPGPU for Instruction-Set Simulation – Maybe, Maybe not”

Memory Models: x86 is TSO, TSO is Good

By chance, I got to attend a day at the UPMARC Summer School with a very enjoyable talk by Francesco Zappa Nardelli from INRIA. He described his work (along with others) on understanding and modeling multiprocessor memory models. It is a very complex subject, but he managed to explain it very well.

Continue reading “Memory Models: x86 is TSO, TSO is Good”

Photoshop Scalability and “-10% overhead”

I just finished reading the October 2010 issue of Communications of the ACM. It contained some very good articles on performance and parallel computing. In particular, I found the ACM Case Study on the parallelism of Photoshop a fascinating read. There was also the second part of Cary Millsap’s articles about “Thinking Clearly about Performance”.

Continue reading “Photoshop Scalability and “-10% overhead””

Wind River Blog: “IMA on Simics”

I have a fairly lengthy new blog post at my Wind River blog. This time, I interview Tennessee Carmel-Veilleux, a Canadian MSc student who have done some very smart things with Simics. His research is in IMA, Integrated Modular Avionics, and how to make that work on multicore.

Continue reading “Wind River Blog: “IMA on Simics””

Multicore is not That Bad

I recently read a couple of articles on multicore that felt a bit like jumping back in time. In IEEE Spectrum, David Patterson at Berkeley’s parallel computing lab brings up the issue of just how hard it is to program in parallel and that this makes the wholesale move to multicore into something like a “hail Mary pass” for the computer industry. In Computer World, Chris Nicols at NICTA in Australia asks what you will do with a hundred cores – implying that there is not much you can do today. While both articles make some good points, I also think they should be taken with a grain of salt. Things are better than they make them seem. Continue reading “Multicore is not That Bad”

Wind River Blog: True Concurrency is Different

I have another blog up at Wind River. This one is about multicore bugs that cannot happen on multithreaded systems, and is called True Concurrency is Truly Different (Again). It bounces from a recent interesting Windows security flaw into how Simics works with multicore systems.

MCC 2009 Presentations Online

UPMARC_700x150The presentations from the 2009 Swedish Workshop on Multicore Computing (MCC 2009) are now online at the program page for the workshop. Let me add some comments on the workshop per se.

Continue reading “MCC 2009 Presentations Online”

MCC 2009: 2D Stream Processing for Manycore

UPMARC_700x150Today here at the MCC 2009 workshop, I heard an interesting talk by David Black-Schaffer of Stanford university.  His work is on stream programming for image processing (“2D streams”). Pretty simple basic idea, to use 2D blobs of pixels as kernel inputs rather than single values or vectors. Makes eminent sense for image processing.

Continue reading “MCC 2009: 2D Stream Processing for Manycore”

Finally, a Bug!

butterflyPart of my daily work at Virtutech is building demos. One particularly interesting and frustrating aspect of demo-building is getting good raw material. I might have an idea like “let’s show how we unravel a randomly occurring hard-to-reproduce bug using Simics“. This then turns into a hard hunt for a program with a suitable bug in it… not the Simics tooling to resolve the bug. For some reason, when I best need bugs, I have hard time getting them into my code.

I guess it is Murphy’s law — if you really set out to want a bug to show up in your code, your code will stubbornly be perfect and refuse to break. If you set out to build a perfect piece of software, it will never work…

So I was actually quite happy a few weeks ago when I started to get random freezes in a test program I wrote to show multicore scaling. It was the perfect bug! It broke some demos that I wanted to have working, but fixing the code to make the other demos work was a very instructive lesson in multicore debug that would make for a nice demo in its own right. In the end, it managed to nicely illustrate some common wisdom about multicore software. It was not a trivial problem, fortunately.

Continue reading “Finally, a Bug!”

Ericsson Blog Post about DSL

ericsson_logoAndras Vajda of Ericsson wrote an interesting blog post on domain-specific languages (DSLs). Thanks for some success stories and support in what sometimes feels like an uphill battle trying to make people accept that DSLs are a large part of the future of programming. In particular for parallel computing, as they let you hide the complexities of parallel programming.

Continue reading “Ericsson Blog Post about DSL”